B2.1 Introduction to Representation Theory
 Problem Sheet 3, MT 2017

The groups below are assumed to be finite and the representations finitedimensional, unless stated otherwise.

1. Let V, W be two G-representations over \mathbb{C}. Prove that:
(a) $\chi_{V \otimes W}(g)=\chi_{V}(g) \chi_{W}(g)$ for all $g \in G$;
(b) $\chi_{V^{*}}(g)=\chi_{V}\left(g^{-1}\right)=\overline{\chi_{V}(g)}$ for all $g \in G$, where V^{*} denotes the representation contragredient to V.
(c) Suppose W is a one-dimensional representation. Prove that $V \otimes W$ is irreducible if and only if V is irreducible.
(d) Prove that V is irreducible if and only if V^{*} is irreducible.
(e) Let St be the standard 3-dimensional representation of S_{4}. Decompose $\mathrm{St} \otimes \mathrm{St}$ into a direct sum of irreducible representations.
2. Let χ be the character of a $\mathbb{C} G$-module M. Show that $N=\{g \in G \mid \chi(g)=$ $\chi(1)\}$ is a normal subgroup of G
Deduce that a finite group G is simple if and only if $\chi(g) \neq \chi(1)$ for every $g \in G \backslash\{1\}$ and every nontrivial character of G.
3. Show if two $\mathbb{C} G$-modules M_{1} and M_{2} have the same characters then they are isomorphic.
4. Let G act on a finite set Ω and let M be the permutation module with basis $\left\{e_{w} \mid w \in \Omega\right\}$ defined in lectures. Let $\chi=\chi_{M}$ be the character of M. Show that $\sum_{g \in G} \chi(g)=r|G|$ where r is the number of orbits of G on Ω. Suppose now that G is 2-transitive, that is G has two orbits acting on $\Omega \times \Omega$ in the action defined by $g \cdot\left(w_{1}, w_{2}\right):=\left(g \cdot w_{1}, g \cdot w_{2}\right)$
Show that $\sum_{g \in G} \chi(g)^{2}=2|G|$ and deduce that M is a sum of two irreducible submodules $V_{1} \oplus V_{2}$ where V_{1} is the trivial module.
5. Find the character tables of Q_{8} and D_{8}. Does the character table determine the group?
6. For a group G we denote by $[G, G]$ the subgroup generated by all elements $x^{-1} y^{-1} x y$ for all $x, y \in G$. The subgroup $[G, G]$ is the smallest normal subgroup N of G such that G / N is abelian.
Let now G_{1} and G_{2} be two groups with the same character table. Show that $\left|G_{1}:\left[G_{1}, G_{1}\right]\right|=\left|G_{2}:\left[G_{2}, G_{2}\right]\right|$. Show further that the centre of G_{1} has the same size as the centre of G_{2}.
7. Show that an element g of a finite group is conjugate to its inverse if and only if $\chi(g) \in \mathbb{R}$ for all characters of G.
[Optional for those who are taking Galois theory]: More generally show that $\chi(g) \in \mathbb{Z}$ if an only if g is conjugate to g^{n} for each integer n coprime to the order of g in G. What does this tell us about the character table of S_{n} ?
